Mephedrone (4-methylmethcathinone) is a cathinone derivative that is recreationally consumed for its energizing and empathogenic effects. The stimulating properties are believed to arise from the ability of mephedrone to interact with the high-affinity transporters for dopamine (DA) (DAT) and norepinephrine (NET), whereas the entactogenic effect presumably relies on its activity at the serotonin (5-HT) transporter (SERT). Early studies found that mephedrone acts as a releaser at NET, DAT and SERT, and thus promotes efflux of the respective monoamines. Evidence linked drug-induced reverse transport of 5-HT via SERT to prosocial effects, whereas activity at DAT is strongly correlated with abuse liability. Consequently, we sought to evaluate the pharmacology of mephedrone at human (h) DAT and SERT, heterologously expressed in human embryonic kidney 293 cells, in further detail. In line with previous studies, we report that mephedrone evokes carrier-mediated release via hDAT and hSERT. We found this effect to be sensitive to the protein kinase C inhibitor GF109203X. Electrophysiological recordings revealed that mephedrone is actively transported by hDAT and hSERT. However, mephedrone acts as a full substrate of hSERT but as a partial substrate of hDAT. Furthermore, when compared to fully efficacious releasing agents at hDAT and hSERT (i.e. S(+)-amphetamine and para-chloroamphetamine, respectively) mephedrone displays greater efficacy as a releaser at hSERT than at hDAT. In summary, this study provides additional insights into the molecular mechanism of action of mephedrone at hDAT and hSERT.