The effect pH, ionic strength (KCl concentration), weakly and medium charged anionic and cationic polyelectrolytes (PEs) as well as their binary mixtures on the electrokinetic potential of silica particles as a function of the polyelectrolyte/mixture dose, its composition, charge density (CD) of the PE, and way of adding the polymers to the suspension has been studied. It has been shown that addition of increasing amount of anionic PEs increases the absolute value of the negative zeta-potential of particles at pH > pH isoelectric point (IEP = 2.5); this increase is stronger the charge density of the polyelectrolyte is higher. Adsorption of cationic polyelectrolytes at these pH values gives a significant decrease in the negative ζ-potential and overcharging the particles; changes in the ζ-potential are more pronounced for PE samples with higher CD. In mixtures of cationic and anionic PE at pH > pHIEP, the ζ-potential of particles is determined by the adsorbed amount of the anionic polymer independently of the CD of PEs, the mixture composition and the sequence of addition of the mixture components. Unexpectedly, the ζ-potential of silica at pH = 2.1, i.e. < pHIEP, turned out to be positive in the presence of both anionic PE and cationic + anionic PE mixtures. This is explained by formation (and adsorption onto positively charged silica surface) of pseudo-cationic PEs from anionic ones due to transfer of protons from the solution to the amino-group of the anionic polymer. Considerations about the role of coulombic and non-coulombic forces in the mechanism of PE adsorption are presented.
Read full abstract