Introduction: Macroautophagy is a process of bulk protein degradation. Our prior work showed that Atg7 expression is sufficient to induce autophagic flux in vitro and in vivo . When Atg7 was co-expressed with CryAB R120G in the heart, cardiac hypertrophy was blunted in heart weight/body weight ratios and fetal gene expression markers. To determine if Atg7 expression is sufficient to limit hypertrophic growth in another model, we tested the effects of Atg7 overexpression with phenylephrine-induced hypertrophy both in vitro and in vivo . Hypothesis: Atg7 will blunt the hypertrophic effects of phenylephrine. Methods: Rat neonatal cardiomyocytes were infected with adenoviruses expressing either LacZ or Atg7 and treated with phenylephrine to induce cardiomyocytes hypertrophy. Osmotic pumps were surgically implanted into control mice and mice with cardiac-specific expression of Atg7 to infuse phenylephrine (PE) or vehicle (saline) for four weeks. Results: PE treatment significantly increased neonatal cardiomyocyte areas in LacZ-expressing cells, while Atg7-expressing cardiomyocytes showed no growth. In mice, all genotypes responded to PE treatment with significantly increased heart weight/body weight ratios and increased fiber size. However, Atg7-expressing hearts differed significantly from control hearts in normalized heart mass following PE delivery. Vehicle treated Atg7-expressing hearts had 17% smaller myofiber cross-sectional areas than those from control genotypes and had a reduced hypertrophic response to PE, relative to controls. Echocardiography showed that Atg7-expressing hearts had significantly elevated cardiac function (% fractional shortening) prior to and throughout the experiment over control hearts (33% vs. 29%). PE significantly increased fractional shortening) from 29% to 36% in control hearts, but failed to significantly elevate cardiac function in Atg7-expressing hearts further (33% vs 35%). Additional assays are underway to understand the Atg7-dependent adaptations to PE. Conclusion: Atg7 expression yields modestly smaller hearts with enhanced cardiac function which may protect them from hypertrophic stresses like phenylephrine.