Pluto’s atmospheric dynamics occupy an interesting regime in which the radiative time constant is quite long, the combined effects of high obliquity and a highly eccentric orbit can produce strong seasonal variations in atmospheric pressure, and the strong coupling between the atmosphere and volatile transport on the surface results in atmospheric flows that are quite sensitive to surface and subsurface properties that at present are poorly constrained by direct observations. In anticipation of the New Horizons encounter with the Pluto system in July 2015, we present a Pluto-specific three-dimensional general circulation model (GCM), PlutoWRF, incorporating the most accurate current radiative transfer models of Pluto’s atmosphere, a physically robust treatment of nitrogen volatile transport, and the flexibility to accommodate richly detailed information about the surface and subsurface conditions as new data become available. We solve for a physically self-consistent, equilibrated combination of surface, subsurface, and atmospheric conditions to specify the boundary conditions and initial state values for each GCM run. This is accomplished using two reduced versions of PlutoWRF: a two-dimensional surface volatile exchange model to specify the properties of surface nitrogen ice and the initial atmospheric surface pressure, and a one-dimensional radiative–conductive–convective model that uses the two-dimensional model predictions to determine the corresponding global-mean atmospheric thermal profile. We illustrate the capabilities of PlutoWRF in predicting Pluto’s general circulation, thermal state, and volatile transport of nitrogen by calculating the dynamical response of Pluto’s atmosphere, based on four different idealized models of Pluto’s surface ice distribution from Young (Young, L.A. [2013]. Astrophys. J. 766, L22) and Hansen et al. (Hansen, C.J., Paige, D.A., Young, L.A. [2015]. Icarus 246, 183). Our GCM runs typically span 30years, from 1985 to 2015, covering the period from the discovery of Pluto’s atmosphere to present. For most periods simulated, zonal winds are strongly forced by a gradient wind balance, relaxing in later (recent) years to an angular momentum conservation balance of the seasonal polar cap sublimation flow. Near-surface winds generally follow a sublimation flow from the sunlit polar cap to the polar night cap, with a Coriolis turning of the wind as the air travels from pole to pole. We demonstrate the strong contribution of nitrogen sublimation and deposition to Pluto’s atmospheric circulation. As New Horizons data become available, PlutoWRF can be used to construct models of Pluto’s atmospheric dynamics and surface wind regimes more constrained by physical observations.
Read full abstract