Particle isolation techniques are in the spotlight of many areas of science and engineering. In food industry, a harmful bacterial activity can be prevented with the help of separation schemes. In health care, isolation techniques are used to distinguish cancer and healthy cells or in therapy for Alzheimer’s and Parkinson’s diseases. We consider a cloud of Brownian particles of different sizes moving in a periodic potential and subjected to an unbiased driving as well as a constant force. We reveal an efficient separation strategy via the counterintuitive effect of negative mobility when particles of a given size are transported in a direction opposite to the applied constant force. We demonstrate a tunable separation solution in which size of the particle undergoing separation may be controlled by variation of the parameters of the external force applied to the system. This approach is an important step towards the development of point-of-care lab-on-a-chip devices.
Read full abstract