In order to investigate the laws of the laser peening forming process and the effects of laser peening on the surface quality and tensile properties of 5083 aluminum alloy, experiments were conducted utilizing various laser peening paths, energies, and plate thicknesses. Subsequently, laser peening forming experiments were performed on S-shaped and different shapes of aluminum alloy substrates. The impact of different laser peening durations on surface morphology and tensile properties was then analyzed. Results indicated that the largest bending deformation perpendicular to the laser peening path reached 12.5 mm. In cases where the laser peening path was inclined relative to the horizontal direction, torsional deformations were observed in the aluminum alloy plate. For laser energy levels of 5 J, 6 J, and 7 J, deformation amounts were 3.8 mm, 4.9 mm, and 5.4 mm, respectively. Plates with thicknesses of 4 mm exhibited convex deformation, while those with 2 mm thickness showed concave deformation. Furthermore, following one and two laser peening cycles, the residual stresses in the alloy plates were -80 MPa and -107 MPa, the surface hardness increased by 16 HV and 31 HV, the roughness increased by 2.495 μm and 3.615 μm, and the tensile strength increased by 9.5 MPa and 18.5 MPa, respectively.
Read full abstract