Abstract

Dry canisters used in nuclear power plants can be subject to localized corrosion, including stress corrosion cracking. External and residual tensile stress can facilitate the occurrence of stress corrosion cracking. Residual stress can arise from welding and plastic deformation. Mitigation methods of residual stress depend upon the energy used and include laser peening, ultrasonic peening, ultrasonic nanocrystal surface modification, shot peening, or water jet peening. Among these, laser peening technology irradiates a continuous laser beam on the surface of metals and alloys at short intervals to add compressive residual stress as a shock wave is caused. This research studied the effect of laser peening with/without a thin aluminum layer on the corrosion properties of welded 304L stainless steel. The intergranular corrosion rate of the laser-peened specimen was a little faster than the rate of the non-peened specimen. However, laser peening enhanced the polarization properties of the cross-section of 304L stainless steel, while the properties of the surface were reduced by laser peening. This behavior was discussed on the basis of the microstructure and residual stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call