Quercetin is a natural flavonoid with antioxidant, anti-inflammatory, and antibacterial properties. This work aimed to formulate quercetin-cyclodextrin microcapsules (QT-β-CD) while examining their photodynamic antibacterial effects and underlying mechanisms in detail. Characterization of the QT-β-CD was conducted using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The bacteriostatic effects of UV-A irradiation on Escherichia coli O157:H7 (E. coli O157:H7) were investigated. The photodynamic impact of QT-β-CD was assessed by analyzing hydrogen peroxide (H₂O₂) production. The antimicrobial activity was further elucidated through examinations of cell membrane integrity, protein damage, changes in cellular motility, biofilm formation, and extracellular polysaccharide reduction. The effect of QT-β-CD on LuxS and motA gene expression in E. coli O157:H7 was investigated by RT-qPCR. The findings demonstrated that QT-β-CD exhibited potent photodynamic properties and functioned as an efficient photosensitizer, causing substantial damage to E. coli O157:H7 cells. These results underscore the potential of quercetin as an antimicrobial agent for food preservation.
Read full abstract