Parkinson’s Disease (PD) is an age-dependent, incessant, dynamic neurodegenerative illness. In animal models, the administration of the dopaminergic D2 antagonist Haloperidol (HP) affects the nigrostriatal pathway, inducing catalepsy, a state of immobility like PD, bradykinesia, and akinesia. The present study investigated the neural effects of Icariin (ICA), a flavonoid derived from Herba Epimedii, against HP-induced PD in rats compared to a standard drug levodopa (L-DOPA). Twenty-four adult male rats were divided into 4 groups: the control group treated with vehicle, the 2nd group treated with HP intraperitoneally, the 3rd group treated with the same dose of HP+L-DOPA orally, and the 4th one, treated with the same dose of HP+ICA orally. All the groups were treated for fourteen consecutive days. Two days before the last dose, locomotor activity was assessed in open field and rotarod tasks. At the end of the experiment, the malondialdehyde, nitric oxide (NO), iron, glycogen synthase kinase-3beta (GSK-3β), and tyrosine hydroxylase (TH) contents, glutathione S-transferase, catalase, superoxide dismutase, activities were estimated in the midbrain. Also, cortex and midbrain monoamine contents (norepinephrine, dopamine, and serotonin) were determined. Moreover, the midbrain histopathology was detected in all treated groups. The results suggested that the neuroleptic effect of HP was completely improved by ICA. This improvement occurred by decreasing the neurotoxicity via lowering midbrain lipid peroxidation, NO, GSK-3β contents, increasing antioxidant biomarkers, TH, and recovering the treated groups' cortex and midbrain monoamines contents. In conclusion, this study suggests that ICA is a suitable treatment for Parkinson's induced by HP.
Read full abstract