The collective foraging behavior of ant colonies is a central focus in behavioral ecology. This paper enhances the classical model of foraging dynamics in harvester ant colonies by introducing a nonlinear recruitment rate and considering environmental variability. Initially, we analyze the existence and stability of steady states in the deterministic model. The results suggest that an increase in mean recruitment time can reduce the foraging threshold, leading to both forward and backward bifurcations. Furthermore, both average recruitment time and the interference intensity of recruiters impact the number of workers in each subgroup. Subsequently, we conduct an analysis of the long-term and transient dynamics of collective foraging in random environments, providing sufficient conditions for the colony to sustain foraging activity. The findings emphasize the scene-dependent impact of environmental stochasticity on foraging dynamics. When ant colonies deterministically cease foraging, environmental stochasticity may unexpectedly prolong the foraging state. Conversely, when colonies deterministically persist in foraging, environmental stochasticity may disrupt this continuity. Additionally, the effect of environmental stochasticity on foraging status varies with the initial worker size. Sizes near the boundary of the basin of attraction between non-foraging and foraging states exhibit greater sensitivity to environmental stochasticity, and sufficiently large stochasticity can impact foraging dynamics across a broader range of initial worker sizes. These findings underscore the intricate interplay between intrinsic factors (e.g., recruitment efficiency and interference intensity) and extrinsic factors (e.g., environmental stochasticity) in shaping the collective foraging dynamics of ant colonies.
Read full abstract