Abstract

It is estimated by scientists that 50–80% of the oxygen production on the planet comes from the oceans due to the photosynthetic activity of phytoplankton. Some of this production is consumed by both phytoplankton and zooplankton for cellular respiration. In this article, we have analyzed the dynamics of the oxygen-plankton model with a modified Holling type II functional response, based on the premise that zooplankton has a variable search rate, rather than constant, which is ecologically meaningful. The positivity and uniform boundedness of the studied system prove that the model is well-behaved. The feasibility conditions and stability criteria of each equilibrium point are discussed. Next, the occurrence of local bifurcations are exhibited taking each of the vital system parameters as a bifurcation parameter. Numerical simulations are illustrated to verify the analytical outcomes. Our findings show that (i) the system dynamics change abruptly for a low oxygen production rate, resulting in depletion of oxygen and plankton extinction; (ii) the proposed system has oscillatory behavior in an intermediate range of oxygen production rates; (iii) it always has a stable coexistence steady state for a high oxygen production rate, which is dissimilar to the outcome of the model of a coupled oxygen-plankton dynamics where zooplankton consumes phytoplankton with classical Holling type II functional response. Lastly, the effect of environmental stochasticity is studied numerically, corresponding to our proposed system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.