PurposeThis study aims to explore suitable anode materials used in the electrochemical system for indigo dyeing wastewater, to achieve optimal treatment performances.Design/methodology/approachThe single factor experiment was used to explore the optimum process parameters for electrochemical decolorization of indigo dyeing wastewater by changing the applied voltage, electrolysis time and electrolyte concentration. At the voltage of 9 V, the morphology of flocs with different electrolytic times was observed and the effect of electrolyte concentration on decolorization rate in two electrolyte systems was also investigated. Further analysis of chemical oxygen demand (COD) removal rate, anode weight loss and sediment quantity after electrochemical treatment of indigo dyeing wastewater were carried out.FindingsComprehensive considering the decolorization degree and COD removal rate of the wastewater, the aluminum electrode showed the best treatment effect among several common anode materials. With aluminum electrode as an anode, under conditions of applied voltage of 9 V, electrolysis time of 40 min and sodium sulfate concentration of 6 g/L, the decolorization percentage obtained was of 94.59% and the COD removal rate reached at 84.53%.Research limitations/implicationsIn the electrochemical treatment of indigo dyeing wastewater, the aluminum electrode was found as an ideal anode material, which provided a reference for the choice of anodes. The electrodes used in this study were homogenous material and the composite material anode needed to be further researched.Practical implicationsIt provided an effective and practical anode material choice for electrochemical degradation of indigo dyeing wastewater.Originality/valueCombined with the influence of applied voltage, electrolysis time and electrolyte concentration and anode materials on decolorization degree and COD removal rate of indigo dyeing wastewater, providing a better electrochemical treatment system for dyehouse effluent.