There are few studies on the effects of electrically stimulated bacteria on anti-nutritional factors and microbial communities in mulberry leaf silage. This study aimed to examine the impact of the combined use of electrically stimulated Bacillus subtilis (EB) and Lactobacillus casei (LC) on the quality and degradation of anti-nutritional factors in mulberry leaf silage. The results revealed that the synergistic effect of EB and LC significantly enhanced the nutritional value of mulberry leaves, as evidenced by the promotion of lactic acid synthesis, the reduction of anti-nutritional factors, and the augmentation of lactic acid bacteria following a 60-day silage period. Moreover, the EB + LC co-inoculation resulted in the highest quality of mulberry leaf silage, with the degradation rates of tannin and phytic acid at 38.8% and 47.1%, respectively. The combination of EB + LC also enhanced lactic acid content, along with significant reductions in ammonia nitrogen (NH3-N), soluble protein, and non-protein nitrogen (NPN) (P < 0.05). Spearman correlation analysis showed that Lactobacillus in the silage was significantly positively correlated with crude protein (CP) and lactic acid, while negatively correlated with water-soluble carbohydrates, pH and NPN (P < 0.05). In contrast, Weissella was significantly negatively correlated with CP and lactic acid. This study represents a pioneering application of electro-stimulation in the field of feed silage, offering a scientifically substantiated approach to degrading anti-nutritional factors in mulberry leaves for livestock feeding. © 2024 Society of Chemical Industry.
Read full abstract