Polaron transport process in semiconducting polymers with disordered structure and morphology is simulated using a nonadiabatic evolution method. The simulations are performed within the framework of an extended version of the Su–Schrieffer–Heeger model modified to include diagonal disorder, off-diagonal disorder and an external electric field. It is found that the polaron transport mechanism is determined by the competition between the disorder and the electric field. For the case of pure diagonal disorder, the polaron transport undergoes a crossover from adiabatic drift to nonadiabatic hopping under a large scope of electric field (E<2.0mV/Å), whereas the field-assisted tunneling dominates charge transport for a higher electric field. For the combined disorder, it is demonstrated that the competition effects and the synergetic effects between the diagonal and off-diagonal disorder are equally important. The effects of diagonal disorder are negative in most cases, and the energetically easier pathways for charge transport are mainly opened by the off-diagonal disorder.
Read full abstract