To explore the reason for cytoplasmic replacement's significant effect on browning, transcriptomic data of nuclear (N) and mitochondrial (M) mRNAs and long noncoding RNAs (lncRNAs) in L808 and two cytoplasmic hybrids (cybrids) (L808-A2 and L808-B) of Lentinula edodes at three different culturing times (80, 100, and 120 days) were obtained. The results showed that the expression of N and M genes and lncRNAs changed with the culture time and cytoplasmic source. Cytoplasmic replacement significantly affected some M and N genes related to the internal mechanism and external morphological characteristics of L. edodes browning. The internal browning mechanism should be the nicotinamide adenine dinucleotide phosphate (NADPH)-mediated antioxidant machinery to protect mycelia against oxidative stress induced by the generation of reactive oxygen species under light irradiation. External morphological characteristics were the changing features of brown films by melanin (an antioxidant) aggregation on the surface of the mycelia of the bag or log. Especially, some genes were related to the remodeling of the plasma membrane, extracellular enzymes of celluloses and hemicellulases, small molecules, and NADPH metabolic processes. Additionally, communication between the nucleus and mitochondria mediated by M-rps3 was reported for the first time, and it is mainly appreciated in M structural assembly, functional implementation, and cooperation with other organelles.