Chlorine- and copper-doped polycrystalline CdS films were prepared by coating a slurry which consisted of CdS, CdCl2, CuCl2 and propylene glycol on a glass substrate and sintering in a nitrogen atmosphere, to investigate the effects of copper doping on the window properties of all-polycrystalline CdS/CdTe heterojunction solar cells. The variations of carrier concentration as a function of the amount of copper doping in CdS films which were doped with the order of 1018 cm−3 chlorine have been explained in terms of electronic compensation of the copper impurity. The variations of optical transmission spectra as a function of copper doping have been correlated with the variations of photoconductivity spectra. Even 10 p.p.m. copper in the sintered CdS films degrades the window properties of the CdS films significantly. The degradation is caused by reduced optical transmission rather than by an increase in electrical resistivity.
Read full abstract