The thermal history generated by the additive manufacturing process influences the resulting material properties. Although trends exist between solidification rate and microstructure, solidification rate is not enough to predict final microstructure and thus mechanical properties. The purpose of this study is to relate the combined effects of solidification time and cooling time of the built material to its final ultimate tensile strength. Cooling time was defined as the time from when the location of interest last passes through 1,200 °C to when it reaches 400 °C. Nine locations on a laser deposited IN718 thin wall were studied in detail to understand the effect of cooling rate on tensile strength. Tensile samples were machined at these locations. The thermal histories of the locations of interest were compared with build geometry and the ultimate tensile strength of that location. An inverse proportional relationship was seen between the distance of the location of interest from the substrate and the cooling time. A trend was also seen linking increased surface temperature and increased solidification time. Weighted Cooling And Solidification Time (WCAST) was defined as the sum of weighted normalized solidification time and the normalized cooling time. Ultimate tensile strength was seen to decrease as WCAST increased. Optical microscopy images of the build microstructure confirm that longer cooling and solidification times lead to coarser microstructures, which may cause the lower tensile strengths measured.
Read full abstract