Speech intelligibility is a critical aspect of building science, particularly in educational buildings where poor sound quality may have a detrimental impact on students' learning and teachers’ health. However, considering the numerous building regulations proposing varying definitions and ranges of acoustic comfort, calculating the necessary acoustic indicators can be challenging for designers. Speech intelligibility is a crucial component of indoor acoustics and acoustic comfort and can be calculated using formulas, simulation software, and data-based web tools. While formulas are fast, they lack details; acoustic simulation software is highly accurate but time-consuming and expensive. Data-based web tools, including machine learning algorithms, offer both speed and accuracy and are widely accessible. In this study, we present a system utilizing machine learning techniques to predict acoustic indicators, numeric and heatmap, in an educational building. The Pachyderm plugin in the Grasshopper was utilized to conduct extensive simulations in a single educational space, focusing on acoustic indicators in six different frequencies and general modes. Using Catboost and the pix2pix algorithm, the prediction models provide numerical and image indices on the developed dataset. Also, SHAP values were employed to interpret the Catboost model, analyzing the significance of each feature. The results showed remarkable accuracy, (i.e., between 89 % and 99 %) in the numerical portion, and PSNR index ranging from 0.817 to 0.970, and an SSIM index ranging from 15.56 to 31.57 in the image section. By utilizing data-driven methods, the system provides an efficient and accurate approach to calculating acoustic indicators, helping to ensure optimal acoustic environment in educational buildings.