AbstractThe Ediacaran Doushantuo Formation at Weng'an, South China hosts well-preserved phosphatized microfossils known as the Weng'an biota. A laser ablation ICP-MS analysis of rare earth element (REE) characteristics of the fossil-bearing black phosphorite unit of the Doushantuo Formation at Weng'an was conducted, with the aim of unravelling the depositional conditions and diagenetic processes during formation of the phosphorites. Spherical phosphatized microfossils and phosphatic clasts were analysed, and the REE data display middle REE (MREE) -enriched shale-normalized REE patterns. The spherical phosphatized microfossils show an increase in total REE contents (∑REE) from core to rim. Negative correlations between ∑REE and the extent of MREE enrichment over the other REE (indicated by LaN/SmN, YbN/SmN) are observed for analysed spots within individual phosphatic grains, which may be due to complex diagenetic history of the phosphatic grains, with fluctuations in REE sources and chemical parameters in a high-energy shallow-water environment being additional factors. The LaN/YbNand LaN/SmNcharacteristics of the phosphatic grains suggest they were mostly influenced by early diagenetic alteration rather than late extensive recrystallization. The negative Ce anomalies in the samples suggest they formed under oxic-bottom-water conditions. Positive Eu anomalies are present in all samples, and are likely to reflect involvement of hydrothermal fluids rather than changes in redox conditions of porewater. Overall this study has major implications for phosphorites as important archives for the study of geochemical proxies, the Ediacaran period and also evolutionary changes.