Stem volume is a very important parameter in forestry inventory and carbon storage. The stem volume estimated by most existing methods deviates from its true value because the irregularity of the stem is usually overlooked. In this study, we propose a stem segment volume estimation based on the tetrahedron model using TLS data. First, the initial stem segment surface model, including the lower, upper, and outer triangular surface models, was gradually reconstructed. Next, the outer surface model was subdivided based on the edge subdivision. Then, a closed triangular surface model without self-intersection was obtained. Afterward, a tetrahedron model of the stem segment was generated using TetGen software (Version 1.6.0) for the triangular surface model. Finally, the stem segment volume was calculated by summing the volumes of all the tetrahedrons in the tetrahedron model. An experiment with 76 stem segments from different tree species with different parameters showed that the reconstructed stem segment surface model effectively reflected the geometrical features of the stem segment surface. Compared to the volume based on the simulated sectional measurement, the MAPE of the volume based on the tetrahedron model was 2.12%. The results demonstrated the validity of the presented method for stem surface reconstruction and stem volume estimation, and the volume based on the tetrahedron model was closer to the true value than that based on the sectional measurement.