Large-size thin-walled curved surface parts of pure iron are crucial in aerospace, national defense, energy and precision physical experiments. However, the high machining accuracy and surface quality are difficult to achieve due to the serious tool wear and deformation when machining the parts with conventional cutting tools. In this paper, an elliptical vibration cutting (EVC) with active cutting edge shift (ACES) based on a long arbor vibration device is proposed for ultra-precision machining the pure iron parts by using diamond tool. Compared with cutting at a fixed cutting edge, the influence of ACES on the EVC was analyzed. Experiments in EVC of pure iron with ACES were conducted. The evolutions of the surface roughness, surface topography, and chip morphology with tool wear in EVC with ACES are revealed. The reasonable parameters of ultra-precision machining the pure iron parts by EVC with ACES were determined. It shows that the ACES has a slight influence on the machined surface roughness and surface topography. The diamond tool life can be significantly prolonged in EVC of pure iron with ACES than that with a fixed cutting edge, so that high profile accuracy and surface quality could be obtained even at higher nominal cutting speed. A typical thin-walled curved surface pure iron part with diameter ∅240 mm, height 122 mm, and wall thickness 2 mm was fabricated by the presented method, and its profile error and surface roughness achieved PV 2.2 μm and Ra less than 50 nm, respectively.