The fusion of LiDAR and photogrammetry point clouds is a necessary advancement in 3D-modeling, enabling more comprehensive and accurate representations of physical environments. The main contribution of this paper is the development of an innovative fusion system that combines classical algorithms, such as Structure from Motion (SfM), with advanced machine learning techniques, like Coherent Point Drift (CPD) and Feature-Metric Registration (FMR), to improve point cloud alignment and fusion. Experimental results, using a custom dataset of real-world scenes, demonstrate that the hybrid fusion method achieves an average error of less than 5% in the measurements of small reconstructed objects, with large objects showing less than 2% deviation from real sizes. The fusion process significantly improved structural continuity, reducing artifacts like edge misalignments. The k-nearest neighbors (kNN) analysis showed high reconstruction accuracy for the hybrid approach, demonstrating that the hybrid fusion system, particularly when combining machine learning-based refinement with traditional alignment methods, provides a notable advancement in both geometric accuracy and computational efficiency for real-time 3D-modeling applications.
Read full abstract