Bulk metallic glasses (BMGs) and their composites (BMGMCs) have emerged as competitive materials for structural engineering applications exhibiting superior tensile strength, hardness along with very large elastic strain limit. However, they suffer from lack of ductility and subsequent low toughness due to the inherent brittleness of the glassy structure which makes them amenable to failure without appreciable yielding. Various mechanisms and methods have been proposed to counter this effect out of which, recently Additive Manufacturing has gained widespread attention. It is proposed that additive manufacturing can overcome these difficulties in single step due to inherent existence of very high cooling rate in the process which is essential for glass formation. This, when coupled with careful selection of alloy chemistry is proposed to be the best solution to fabricate near net shape parts in a single step with excellent properties. In this report, an effort has been made to describe one possible route to achieve this. Solidification processing employing carefully selected inoculants based on edge to edge matching technique along with the carefuly controlled inoculation procedure is proposed to reflect upon enhanced mechanical properties. It is hypothesized that number density, size and distribution of ductile crystalline phase would best be able to improve microstructure and hence properties. This is meant to be controlled by manipulating type, size and the amount of inoculants. The proposed methodology is claimed to bear maximum potential.
Read full abstract