As evidenced by many cases in human societies, individuals often make different behavior decisions in different interactions, and adaptively adjust their behavior in changeable interactive scenarios. However, up to now, how such diverse interactive behavior affects cooperation dynamics has still remained unknown. Here we develop a general framework of interactive diversity, which models individuals’ separated behavior against distinct opponents and their adaptive adjustment in response to opponents’ strategies, to explore the evolution of cooperation. We find that interactive diversity enables individuals to reciprocate every single opponent, and thus sustains large-scale reciprocal interactions. Our work witnesses an impressive boost of cooperation for a notably extensive range of parameters and for all pairwise games. These results are robust against well-mixed and various networked populations, and against degree-normalized and cumulative payoff patterns. From the perspective of network dynamics, distinguished from individuals competing for nodes in most previous work, in this paper, the system evolves in the form of behavior disseminating along edges. We propose a theoretical method based on evolution of edges, which predicts well both the frequency of cooperation and the compact cooperation clusters. Our thorough investigation clarifies the positive role of interactive diversity in resolving social dilemmas and highlights the significance of understanding evolutionary dynamics from the viewpoint of edge dynamics.