A novel paradigm that changes the scene for the modern communication and computation systems is the Edge Computing. It is not a coincidence that terms like Mobile Cloud Computing, Cloudlets, Fog Computing, and Mobile-Edge Computing are gaining popularity both in academia and industry. In this paper, we embrace all these terms under the umbrella concept of “Edge Computing” to name the trend where computational infrastructures hence the services themselves are getting closer to the end user. However, we observe that bringing computational infrastructures to the proximity of the user does not magically solve all technical challenges. Moreover, it creates complexities of its own when not carefully handled. In this paper, these challenges are discussed in depth and categorically analyzed. As a solution direction, we propose that another major trend in networking, namely software-defined networking (SDN), should be taken into account. SDN, which is not proposed specifically for Edge Computing, can in fact serve as an enabler to lower the complexity barriers involved and let the real potential of Edge Computing be achieved. To fully demonstrate our ideas, initially, we put forward a clear collaboration model for the SDN-Edge Computing interaction through practical architectures and show that SDN related mechanisms can feasibly operate within the Edge Computing infrastructures. Then, we provide a detailed survey of the approaches that comprise the Edge Computing domain. A comparative discussion elaborates on where these technologies meet as well as how they differ. Later, we discuss the capabilities of SDN and align them with the technical shortcomings of Edge Computing implementations. We thoroughly investigate the possible modes of operation and interaction between the aforementioned technologies in all directions and technically deduce a set of “Benefit Areas” which is discussed in detail. Lastly, as SDN is an evolving technology, we give the future directions for enhancing the SDN development so that it can take this collaboration to a further level.
Read full abstract