AbstractThe lattice Boltzmann method has become a widely used tool for the numerical simulation of fluid flows and in particular of turbulent flows. In this frame the inclusion of subgrid scale closures is of crucial importance and is not completely understood from the theoretical point of view. Here, we propose a consistent way of introducing subgrid closures in the BGK Boltzmann equation for large eddy simulations of turbulent flows. Based on the Hermite expansion of the velocity distribution function, we construct a hierarchy of subgrid scale terms, which are similar to those obtained for the Navier–Stokes equations, and discuss their inclusion in the lattice Boltzmann method scheme. A link between our approach and the standard way on including eddy viscosity models in the lattice Boltzmann method is established. It is shown that the use of a single modified scalar relaxation time to account for subgrid viscosity effects is not consistent in the compressible case. Finally, we validate the approach in the weakly compressible case by simulating the time developing mixing layer and comparing with experimental results and direct numerical simulations.
Read full abstract