An abundance of antisense promoters in the vicinity of the transcriptional start site of coding genes suggests that they play an important role in gene regulation. The divergent transcription of housekeeping genes by a common central promoter region allows for coordinated regulation of genes in related pathways and is also linked to higher promoter activity. However, closely positioned transcription start sites can also result in competition between overlapping promoter elements and generate a binary switch element. Furthermore, the direct competition resulting from the presence of an antisense promoter immediately downstream of the transcription start site of the gene produces an element that can exist in only one of two stable transcriptional states: sense or antisense. In this review, we summarize analyses of the prevalence of antisense transcription in higher eukaryotes and viruses, with a focus on the antisense promoters competing with the promoters of coding genes. The structures of bidirectional promoters driving the simultaneous expression of housekeeping genes are compared with examples of human bidirectional elements that have been shown to act as switches. Since many bidirectional elements contain a noncoding RNA as the divergent transcript, we describe examples of functional noncoding antisense transcripts that affect the epigenetic landscape and alter the expression of their host gene. Finally, we discuss opportunities for additional research on competing sense/antisense promoters, uncovering their potential role in programming cell differentiation.