The ready-made garment industry is critical to the Bangladesh economy. There is an urgent need to improve current working conditions and build capacity for heat mitigation as conditions worsen due to climate change. We modelled a typical, mid-sized, non-air-conditioned factory in Bangladesh and simulated how the indoor thermal environment is altered by four rooftop retrofits (1. extensive green roof, 2. rooftop shading, 3. white cool roof, 4. insulated white cool roof) on present-day and future decades under different climate scenarios. Simulations showed that all strategies reduce indoor air temperatures by around 2 °C on average and reduce the number of present-day annual work-hours during which wetbulb globe temperature exceeds the standardised limits for moderate work rates by up to 603 h - the equivalent of 75 (8 h) working days per year. By 2050 under a high-emissions scenario, indoor conditions with a rooftop intervention are comparable to present-day conditions. To reduce the growing need for carbon-intensive air-conditioning, sustainable heat mitigation strategies need to be incorporated into a wider range of solutions at the individual, building, and urban level. The results presented here have implications for factory planning and retrofit design, and may inform policies targeting worker health, well-being, and productivity.
Read full abstract