As an energy carrier characterized by its high energy density and eco-friendliness, hydrogen holds a pivotal position in energy transition. This paper elaborates on the scientific foundations and recent progress of photo- and electro-catalytic water splitting, including the corresponding mechanism, material design and optimization, and the economy of hydrogen production. It systematically reviews the research progress in photo(electro)catalytic materials, including oxides, sulfides, nitrides, noble metals, non-noble metal, and some novel photocatalysts and provides an in-depth analysis of strategies for optimizing these materials through material design, component adjustment, and surface modification. In particular, it is pointed out that nanostructure regulation, dimensional engineering, defect introduction, doping, alloying, and surface functionalization can remarkably improve the catalyst performance. The importance of adjusting reaction conditions, such as pH and the addition of sacrificial agents, to boost catalytic efficiency is also discussed, along with a comparison of the cost-effectiveness of different hydrogen production technologies. Despite the significant scientific advancements made in photo(electro)catalytic water splitting technology, this paper also highlights the challenges faced by this field, including the development of more efficient and stable photo(electro)catalysts, the improvement of system energy conversion efficiency, cost reduction, the promotion of technology industrialization, and addressing environmental issues.
Read full abstract