To fully leverage the potential flexibility resources of a source-network-load-storage (SNLS) system and achieve the green transformation of multi-source systems, this paper proposes an economic and low-carbon operation strategy for an SNLS system, considering the joint operation of ladder-type green certificate trading (GCT)–carbon emission trading (CET), and integrated demand response (IDR). Firstly, focusing on the load side of electricity–heat–cooling–gas multi-source coupling, this paper comprehensively considers three types of flexible loads: transferable, replaceable, and reducible. An IDR model is established to tap into the load-side scheduling potential. Secondly, improvements are made to the market mechanisms: as a result of the division into tiered intervals and introduction of reward–penalty coefficients, the traditional GCT mechanism was improved to a more constraining and flexible ladder-type GCT mechanism. Moreover, the carbon offset mechanism behind green certificates serves as a bridge, leading to a GCT-CET joint operation mechanism. Finally, an economic low-carbon operation model is formulated with the objective of minimizing the comprehensive cost consisting of GCT cost, CET cost, energy procurement cost, IDR cost, and system operation cost. Simulation results indicate that by effectively integrating market mechanisms and IDR, the system can enhance its capacity for renewable energy penetration, reduce carbon emissions, and achieve green and sustainable development.
Read full abstract