One of the main differences between regional climate model and convection-permitting model simulations is not just how well topographic characteristics are represented, but also how deep convection is treated. The convection process frequently occurs within hours, thus a sub-daily scale becomes appropriate to evaluate these changes. To do this, a series of simulations has been carried out at different spatial resolutions (0.11 and 0.025) using the COSMO-CLM (CCLM) climate model forced by the ECMWF Reanalysis v5 (ERA5) between 2011 and 2020 over a domain covering northwestern Türkiye. Hourly precipitation and heavy precipitation simulated by both models were compared with the observations by Turkish State Meteorological Service (TSMS) stations and Integrated Multi-satellitE Retrievals for GPM (IMERG). Subsequently, we aimed to identify the reasons behind these differences by computing several atmospheric stability parameters and conducting event-scale analysis using atmospheric sounding data. CCLM12 displays notable discrepancies in the timing of the diurnal cycle, exhibiting a premature shift of several hours when compared to the TSMS. CCLM2.5 offers an accurate representation of the peak times, considering all hours and especially those occurring during the wet hours of the warm season. Despite this, there is a tendency for peak intensities to be overestimated. In both seasons, intensity and extreme precipitation are highly underestimated by CCLM12 compared to IMERG. In terms of statistical metrics, the CCLM2.5 model performs better than the CCLM12 model under extreme precipitation conditions. The comparison between CCLM12 and CCLM2.5 at 12:00 UTC reveals differences in atmospheric conditions, with CCLM12 being wetter and colder in the lower troposphere but warmer at higher altitudes, overestimating low-level clouds and producing lower TTI and KI values. These conditions can promote faster air saturation in CCLM12, resulting in lower LCL and CCL, which foster the development of low-level clouds and frequent low-intensity precipitation. In contrast, the simulation of higher TTI and KI values and a steeper lapse rate in CCLM2.5 enables air parcels to enhance instability, reach the LFC more rapidly, increase EL, and finally promote deeper convection, as evidenced by higher CAPE values and intense low-frequency precipitation.
Read full abstract