This paper investigates the evolution of spectral properties observed in Cuvier's beaked whale (Ziphius cavirostris) click trains recorded by fixed hydrophones in the Gulf of Mexico. In the context of deep water and high-frequency sounds and observed inter-click intervals, the authors assumed that the main effect responsible for the modification of the spectral content between adjacent clicks in the same click train is the source beam pattern. The spectral structure is studied by using the Wigner-Ville time-frequency distribution and is compared with the conventional Fourier spectrogram. The results show that the observed Cuvier's beaked whale clicks are a superposition of upsweep and downsweep chirps, unlike the currently accepted upsweep only structure of beaked whale clicks in bioacoustics literature. The spectral structure variations simulated by using a flat circular piston model as a beam pattern transmission model are consistent with the evolution of spectral click properties observed in experimental data. A better understanding of the properties of observed echolocation clicks of Cuvier's beaked whales will provide useful information for click annotations and, therefore, will contribute to improving accuracy of detecting, classifying, tracking, and estimating the density of Cuvier's beaked whales.
Read full abstract