SVM은 학습 데이터를 두 개의 집단으로 분리시키는 최적의 초평면을 찾는 이진 분류기로서 우수한 성능 때문에 다양한 분야에서 귀납 추론, 이진 분류, 예측 등을 목적으로 사용되는 알고리즘이다. 또한 대표적인 블랙박스 모델 중 하나이기 때문에 학습 후 생성되는 SVM의 해석에 대한 연구도 활발히 진행되고 있다. 본 논문에서는 SVM 알고리즘을 이용하여 기상 레이더의 데이터 내에 비교적 높은 빈도로 발생하여 기상 예보의 정확도를 감소시키는 비강수에코 중 하나인 선에코를 자동으로 탐지하는 방법에 대한 연구를 수행하였다. 학습 데이터로는 평균 반사도, 크기, 발생 형태, 중심 고도 등과 같은 특성을 활용하였는데, 이는 기상 레이더 데이터에 저장된 다양한 데이터 중 반사도 값을 선택한 후 클러스터링 기법을 통해 추출한 것이다. 이와 같이 학습된 SVM 분류기를 실제 사례를 바탕으로 하여 검증하였으며, Decision Tree 알고리즘을 적용하여 생성한 분류기의 해석을 수행하였다. A SVM is a kind of binary classifier in order to find optimal hyperplane which separates training data into two groups. Due to its remarkable performance, the SVM is applied in various fields such as inductive inference, binary classification or making predictions. Also it is a representative black box model; there are plenty of actively discussed researches about analyzing trained SVM classifier. This paper conducts a study on a method that is automatically detecting the line-shaped echoes, sun strobe echo and radial interference echo, using the SVM algorithm because the line-shaped echoes appear relatively often and disturb weather forecasting process. Using a spatial clustering method and corrected reflectivity data in the weather radar, the training data is made up with mean reflectivity, size, appearance, centroid altitude and so forth. With actual occurrence cases of the line-shaped echoes, the trained SVM classifier is verified, and analyzed its characteristics using the decision tree method.
Read full abstract