The Vessel Traffic Service (VTS) systems belong to the fundamental tools used in ensuring a high level of safety across sea basins with heavy traffic, where the presence of navigational hazards poses a great risk of collision or a ship running aground. In order to determine the mutual location of ships, VTS systems obtain information from different facilities, such as coastal radar stations, AIS, and vision systems. Fixing a ship’s position is always accompanied by a degree of error, but the degree of error depends on the specific position fixing system used. In order to increase the accuracy of position fixing in VTS systems, the authors propose the use of contemporary geodetic methods. The article presents the theoretical fundamentals of two unconventional geodesic methods of estimation: M estimation and Msplit(q)estimation and the authors’ own proposal of their application in VTS systems. The article concludes with a test verifying theoretical assumptions, performed with the use of a computer application allowing position fixing with the use of selected robust adjustment methods. Furthermore, an example is presented of Msplit(q)estimation as used for the acquisition of low-signal radar echoes, which in VTS systems are not automatically identified for tracking. The level of the echo signal makes it difficult for a VTS controller to separate these objects from typical radar noise and interference.
Read full abstract