Brodalumab, a humanized monoclonal antibody that targets the interleukin-17 receptor A, is primarily used to manage moderate-to-severe plaque psoriasis. Although it has demonstrated favorable efficacy and safety in clinical trials, the strict inclusion and exclusion criteria may not fully reflect its safety profile in real-world settings. As its use becomes more widespread in clinical practice, understanding its safety in real-world applications is crucial.This study employed disproportionality analysis to assess the safety of brodalumab by examining all adverse event reports that identified brodalumab as the primary suspected drug in the FDA Adverse Event Reporting System database since 2017. Techniques such as the Reporting Odds Ratio, Proportional Reporting Ratio, Multi-item Gamma Poisson Shrinker, and Bayesian Confidence Propagation Neural Network were utilized to analyze the adverse events associated with brodalumab. Additionally, the Weibull distribution was used to model the temporal risk of adverse events.The study identified several adverse reactions already listed on the drug’s label that showed positive signals, including arthralgia, headache, myalgia, suicidal ideation, oropharyngeal pain, injection site mass, and infections. Additionally, we found potential adverse reactions not noted on the drug’s label that exhibited positive signals, including depression, increased blood pressure, peripheral swelling, gait disturbance, inability to walk, stress, myocardial infarction, sepsis, uveitis, nephrolithiasis, and interstitial lung disease. Moreover, this analysis highlighted the critical need for vigilant monitoring of adverse events, especially during the first month following the initiation of treatment.This study provides initial insights into the real-world safety of brodalumab, confirming known adverse reactions and uncovering additional potential risks. The results deliver vital information that can assist clinicians in making informed decisions when prescribing brodalumab for psoriasis treatment.
Read full abstract