With the proliferation of wearable wireless sensors and adequate communication protocols, the internet of things (IoT) started to shape the healthcare sector into a new frame of connection between patients with health providers. Although the huge opportunities granted by this paradigm, it raises some concerns as well. Two main issues that could be highlighted are power consumption and medical record security. This paper aims to address both issues in an IoT-based remote health monitoring systems by exploring compressive sensing (CS). The presented solution exploits shift registers with sparse sensing matrices in order to construct an encryption key to implement a lightweight efficient encryption scheme. The obtained results show that CS can reduce power consumption by a factor of 35% by only transmitting 70% of the data while preserving the ECG information. In addition, the paper demonstrates that transmission is kept secure even if the illegitimate attacker can access 95% of the information needed to recover the data.
Read full abstract