Natural distributions of most freshwater taxa are restricted geographically, a pattern that reflects dispersal limitation. Macrobrachium rosenbergii is unusual because it occurs naturally in rivers from near Pakistan in the west, across India and Bangladesh to the Malay Peninsula, and across the Sunda Shelf and Indonesian archipelago to western Java. Individuals cannot tolerate full marine conditions, so dispersal between river drainage basins must occur at limited geographical scales when ecological or climatic factors are favorable. We examined molecular diversity in wild populations of M. rosenbergii across its complete natural range to document patterns of diversity and to relate them to factors that have driven evolution of diversity in this species. We found 3 clades in the mitochondrial deoxyribonucleic acid (mtDNA) data set that corresponded geographically with eastern, central, and western sets of haplotypes that last shared a common ancestor ∼1 × 106 y ago. The eastern clade was closest to the common ancestor of all 3 clades and to the common ancestor with its congener, Macrobrachium spinipes, distributed east of Huxley’s Line. Macrobrachium rosenbergii could have evolved in the western Indonesian archipelago and spread westward during the early to mid-Pleistocene to India and Sri Lanka. Additional groups identified in the nuclear DNA data set in the central and western clades probably indicate secondary contact via dispersal between regions and modern introductions that have mixed nuclear and mtDNA genes. Pleistocene sea-level fluctuations can explain dispersal across the Indonesian archipelago and parts of mainland southeastern Asia via changing river drainage connections in shallow seas on wide continental shelves. At the western end of the modern distribution where continental shelves are smaller, intermittent freshwater plumes from large rivers probably permitted larval dispersal across inshore areas of lowered salinity.