Tsunamis generated by seafloor displacements accompanying large submarine earthquakes provide sensitivity to absolute slip position and distribution for offshore faulting analogous to that of geodetic observations for landward faulting. Tsunami recordings at deep‐water and near‐shore ocean bottom pressure sensors and tide gauges, along with runup and inundation measurements, can now be reliably modeled using detailed bathymetric structures and robust numerical codes. As a result, tsunami observations now play an important role in quantifying coseismic slip distributions for large submarine earthquakes in subduction zones and other tectonic environments. Applications of joint modeling or inversion of seismic, geodetic and tsunami observations for recent major earthquakes are described, highlighting the specific contributions of the tsunami observations to source model resolution. Tsunami observations provide unique information on the up‐dip extent of earthquake coseismic slip on subduction zone megathrust faults and occurrence of near‐trench slip, which are usually not well constrained by seismic and land‐based geodetic signals. Tsunami signals also help to detect offshore slow slip that is not evident in seismic or land‐based geodetic data and to balance geophysical constraints on ruptures that extend from on‐shore to off‐shore. Tsunami runup measurements and stratigraphic deposits further provide unique constraints on large earthquake ruptures that occurred prior to modern geophysical instrumentation.