Abstract

AbstractThe 26 January 1700 CE Cascadia subduction zone earthquake ruptured much of the plate boundary and generated a tsunami that deposited sand in coastal marshes from northern California to Vancouver Island. Although the depositional record of tsunami inundation is extensive in some of these marshes, few sites have been investigated in enough detail to map the inland extent of sand deposition and depict variability in tsunami deposit thickness and grain size. We collected 129 cores in marshes of the Salmon River estuary in Oregon and reanalyzed 114 core logs from a 1987–88 study that mapped the inland extent of circa 1700 CE sandy tsunami deposits. The ca. 1700 CE tsunami deposit in the Salmon River estuary is easily recognized in cores ≤1 m deep in which a buried marsh peat is overlain by a well sorted sand bed with a sharp lower contact that thins and fines inland. We use tsunami deposit data and models of sandy tsunami sediment transport (using Delft3D‐FLOW) to test 15 rupture models that could represent a ca. 1700 CE earthquake. At least 12–16 m of slip offshore of the Salmon River, which results in 0.8–1.0 m of coastal coseismic subsidence, is required to match the ca. 1700 CE sand deposit's inland extent, which is consistent with models of heterogeneous megathrust slip in ca. 1700 CE. Our methods of detailed tsunami deposit mapping, combined with sediment transport modeling, can be used to test models of megathrust ruptures and their tsunamis to potentially improve earthquake and tsunami hazard assessments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.