Brown carbon (BrC) plays a significant role in the Earth's radiative balance, yet its sources and chemical composition remain poorly understood. In this work, we investigated BrC in the atmospheric environment of Seoul by characterizing dissolved organic matter in precipitation using excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). The two independent fluorescent components identified by PARAFAC were attributed to humic-like substance (HULIS) and biologically derived material based on their significant correlations with measured HULIS isolated using solid-phase extraction and total hydrolyzable tyrosine. The year-long observation shows that HULIS contributes to 66 ± 13% of total fluorescence intensity of our samples on average. By using dual carbon (13C and 14C) isotopic analysis conducted on isolated HULIS, the HULIS fraction of BrC was found to be primarily derived from biomass burning and emission of terrestrial biogenic gases and particles (>70%), with minor contributions from fossil-fuel combustion. The knowledge derived from this study could contribute to the establishment of a characterizing system of BrC components identified by EEM spectroscopy. Our work demonstrates that, EEM fluorescence spectroscopy is a powerful tool in BrC study, on the basis of its chromophore resolving power, allowing investigation into individual components of BrC by other organic matter characterization techniques.
Read full abstract