Foaming agents as a combination of several components are usually used as soil conditioning during earth pressure balance shield (EPBS) tunnelling. These residues in waste EPBS muck lead to a series of new challenges for in-situ recycling, i.e., foams overflow flocculation tank. This study investigates the effects of residual foaming agent components and defoamers on defoaming-flocculation-filterpress characteristics of EPBS muck using an improved flocculation and filterpress system. Residual foam height (Hf), defoaming ratio (DFR), antifoaming ratio (AFR), total suspended substance (TSS), turbidity, moisture content (MC), and zeta potential (ZP) were selected as characterization indices. The microstructure of filterpress cakes was analyzed using a scanning electron microscope. Results demonstrate that an enhancement within 0.0-1.0wt.% for sodium fatty alcohol polyoxyethylene ether sulfate (AES) and alpha olefin sulfonate (AOS) significantly reduces DFR and AFR. The MC and ZP decline, while the Hf and turbidity enhance. The combinations of nonionic surfactants alkyl polyglycoside (APG) and fatty alcohol-polyoxyethylene ether (AEO) in a concentration range of 0.0-1.0wt.% with 0.2wt.% AES causes the Hf, DFR, AFR, turbidity, and ZP to exhibit absolutely different variations. The MC with the growth in both APG and AEO presents a trend of first decreasing and then increasing. By increasing foam stabilizers sodium carboxymethyl cellulose (CMC) and guar gum (GG) within 0.02-0.10wt.%, the AFR, TSS, and ZP enhance in varying degrees, while the Hf, DFR, and MC gradually reduce. With the increase of defoamers hydroxyl silicone oil-glycerol polyoxypropylene ether (H-G) and dimethyl silicone oil-glycerol polyoxypropylene ether (D-G) within 0.002-0.010wt.%, the DFR and AFR are significantly improved, while the TSS, turbidity, MC, and ZP display varying degrees of reduction. Moreover, defoaming-flocculation-filterpress mechanisms of EPBS muck are explored to provide a useful reference for actual in-situ recycling projects.
Read full abstract