The earth pressure balance (EPB) shield tunneling efficiency is greatly affected by the choice of soil transport mode. In this study, the influence of two soil transport modes, such as the continuous belt conveyor and rail train, on the efficiency of shield excavation was analyzed using the Markov chain model. A method was proposed to define the ideal and non-ideal excavation states and quantitatively evaluate the excavation efficiency of the two soil transportation modes of the EPB shield. Based on this model framework, a profitable Markov chain model was established to predict the expected profits of the two soil transportation modes. The Beijing Metro New Airport Line first-phase project was used as a case study to verify the model established. The results show that under the same conditions, the continuous belt conveyor soil transport mode can have a higher excavation efficiency and expected profit. This advantage gradually increases over time.