Sinonasal squamous cell carcinoma (SCC) follows a poor prognosis with high tendency for local recurrence. We aimed to evaluate whether MRI radiomics can predict early local failure in sinonasal SCC. Sixty-eight consecutive patients with node-negative sinonasal SCC (January 2005-December 2020) were enrolled, allocated to the training (n = 47) and test sets (n = 21). Early local failure, which occurred within 12 months of completion of initial treatment, was the primary endpoint. For clinical features (age, location, treatment modality, and clinical T stage), binary logistic regression analysis was performed. For 186 extracted radiomic features, different feature selections and classifiers were combined to create two prediction models: (1) a pure radiomics model; and (2) a combined model with clinical features and radiomics. The areas under the receiver operating characteristic curves (AUCs) were calculated and compared using DeLong's method. Early local failure occurred in 38.3% (18/47) and 23.8% (5/21) in the training and test sets, respectively. We identified several radiomic features which were strongly associated with early local failure. In the test set, both the best-performing radiomics model and the combined model (clinical + radiomic features) yielded higher AUCs compared to the clinical model (AUC, 0.838 vs. 0.438, p= 0.020; 0.850 vs. 0.438, p= 0.016, respectively). The performances of the best-performing radiomics model and the combined model did not differ significantly (AUC, 0.838 vs. 0.850, p= 0.904). MRI radiomics integrated with a machine learning classifier may predict early local failure in patients with sinonasal SCC. MRI radiomics intergrated with machine learning classifiers may predict early local failure in sinonasal squamous cell carcinomas more accurately than the clinical model. • A subset of radiomic features which showed significant association with early local failure in patients with sinonasal squamous cell carcinomas was identified. • MRI radiomics integrated with machine learning classifiers can predict early local failure with high accuracy, which was validated in the test set (area under the curve = 0.838). • The combined clinical and radiomics model yielded superior performance for early local failure prediction compared to that of the radiomics (area under the curve 0.850 vs. 0.838 in the test set), without a statistically significant difference.