According to the American Academy of Neurology 2011 guidelines, there is insufficient evidence to support or refute the use of therapeutic plasma exchange (TPE) for myasthenia gravis (MG). The goal of this study was to determine whether a novel nanomembrane-based TPE could be useful in the treatment of MG. Thirty-six adult patients, MGFA 4/4B and 5, with acute MG episodes were enrolled into a single-center retrospective before-and-after study to compare a conventional treatment group (n = 24) with a nanomembrane-based TPE group (n = 12). TPE or intravenous immunoglobulins (IVIG) infusions were used in impending/manifested myasthenic crises, especially in patients at high-risk for prolonged invasive ventilation (IMV) and in those tolerating non-invasive ventilation (NIV). The clinical improvement was assessed using the Myasthenia Muscle Score (0–100), with ≥20 increase for responders. The primary outcome measures included the rates of implemented TPE, IVIG, and corticosteroids immunotherapies, NIV/IMV, early tracheotomy, MMS scores, extubation time, neuro-ICU/hospital LOS, complications, and mortality rates. The univariate analysis found that IMV was lower in the nanomembrane-based group (42%) compared to the conventional treatment group (83%) (p = 0.02). The multivariate analysis using binary logistic regression revealed TPE and NIV as independent predictors for short-term (≤7 days) respiratory support (p = 0.014 for TPE; p = 0.002 for NIV). The novel TPE technology moved our clinical practice towards proactive rather than protective treatment in reducing prolonged IMV during MG acute exacerbations.