Prostate cancer (PCa) is one of the most common cancer types among men and also acommon cause of death globally. With an increasing incidence, there is aneed for low-cost, reliable biomarkers present in samples, which could be provided non-invasively (without a need to perform prostate biopsy). Glycosylation changes of free-PSA (fPSA) are considered cancer-specific, while the level of different PSA forms can increase under other than cancerous conditions. In the present study, we investigated the role ofN,N-diacetyllactosamine (LacdiNAc) epitope of fPSA (i.e. glycoprofile of fPSA or gPSA) in combination with total-PSA (tPSA), prostate volume, and tPSA density (tPSA level divided by prostate volume i.e. PSAd) as biomarkers for monitoring of PCa development and progression in 105 men. Furthermore, we applied an genetic (evolutionary) algorithm to identify any suspicious individuals in abenign cohort having benign prostatic hyperplasia (BPH). We identified 3 suspicious men originally diagnosed with BPH using gPSA analysis. In thefollow-up we found out that two men should not be considered as BPH patients since multiparametric magnetic resonance imaging (mpMRI) identified one man with clinically significant PCa via Prostate Imaging – Reporting and Data System (PI RADS v2 = 4) and the second man was with High-gradeprostatic intraepithelial neoplasia (HG PIN), commonly described as apre-cancerous stage. Moreover, in the study we described for the first time that changed LacdiNAc on PSA can be applied to identify prostatitis patients and most importantly this is the first study suggesting that changed glycosylation on PSA can be applied to identify castration-resistant prostate cancer (CRPCa) patients.
Read full abstract