BackgroundHypertensive disorders of pregnancy (HDP) are a significant cause of maternal and perinatal mortality and morbidity. Knowledge on the placenta-related pathophysiology of HDP is increasing. Since maternal tryptophan metabolites are involved in placentation, we investigated associations between first-trimester tryptophan metabolites and utero-placental (vascular) development, and the occurrence of HDP. Methods911 women were included from a prospective tertiary hospital cohort. Serum tryptophan metabolites were determined at 8.1 ± 1.4 weeks gestation. Placental volume (PV) and utero-placental vascular volume (uPVV) were determined at 7, 9 and 11 weeks gestation. HDP, including hypertension in early pregnancy, gestational hypertension, and preeclampsia, were retrieved from medical records. Associations with PV- and uPVV-trajectories were assessed using mixed models, and HDP risks were estimated by logistic regression models, adjusted for confounders. A mediation analysis was performed to evaluate whether blood pressure was a mediator in the associations with utero-placental (vascular) development. ResultsA negative association between kynurenine and PV-trajectories was found (β = −0.129, 95%CI = −0.220 to –0.039), which was not mediated by blood pressure. No significant associations between other tryptophan metabolites and PV- and uPVV-trajectories were observed. Higher 5-hydroxytryptophan was associated with hypertension in early pregnancy (OR = 1.405, 95%CI = 1.210–1.681), and with an increased risk of preeclampsia in these women. No associations between tryptophan metabolites and other HDP were found. ConclusionsHigher first-trimester kynurenine concentrations were associated with impaired utero-placental (vascular) development. Higher first-trimester 5-hydroxytryptophan concentrations were associated with early pregnancy hypertension, and an increased risk of preeclampsia, indicating its clinical potential as biomarker for future prediction, prevention and treatment of HDP.