Predicting long-term clinical outcomes based on the early DSC PWI MRI scan is valuable for prognostication, resource management, clinical trials, and patient expectations. Current methods require subjective decisions about which imaging features to assess and may require time-consuming postprocessing. This study's goal was to predict multilabel 90-day modified Rankin Scale (mRS) score in acute ischemic stroke patients by combining ensemble models and different configurations of radiomic features generated from Dynamic susceptibility contrast perfusion-weighted imaging. In Follow-up studies, a total of 70 acute ischemic stroke (AIS) patients underwent magnetic resonance imaging within 24hours poststroke and had a follow-up scan. In the single study, 150 DSC PWI Image scans for AIS patients. The DRF are extracted from DSC-PWI Scans. Then Lasso algorithm is applied for feature selection, then new features are generated from initial and follow-up scans. Then we applied different ensemble models to classify between three classes normal outcome (0, 1 mRS score), moderate outcome (2,3,4 mRS score), and severe outcome (5,6 mRS score). ANOVA and post-hoc Tukey HSD tests confirmed significant differences in model style performance across various studies and classification techniques. Stacking models consistently on average outperformed others, achieving an Accuracy of 0.68 ± 0.15, Precision of 0.68 ± 0.17, Recall of 0.65 ± 0.14, and F1 score of 0.63 ± 0.15 in the follow-up time study. Techniques like Bo_Smote showed significantly higher recall and F1 scores, highlighting their robustness and effectiveness in handling imbalanced data. Ensemble models, particularly Bagging and Stacking, demonstrated superior performance, achieving nearly 0.93 in Accuracy, 0.95 in Precision, 0.94 in Recall, and 0.94 in F1 metrics in follow-up conditions, significantly outperforming single models. Ensemble models based on radiomics generated from combining Initial and follow-up scans can be used to predict multilabel 90-day stroke outcomes with reduced subjectivity and user burden.
Read full abstract