<b>Background and Objective:</b> Heat stress is known as a raise of 5°C or more than the optimal temperature. In this study, we analyzed the effect of heat stress on protein content, protein electrophoretic pattern and Superoxide Dismutase (SOD) profile in three populations of <i>Tetraena propinqua</i> subspecies migahidii. <b>Materials and Methods:</b> Populations of <i>Tetraena propinqua</i> ssp. migahidii were studied. The seeds were subjected to 25 (control), 30, 35 and 40°C for 4, 24 and 48 hrs and 10 days. <b>Results:</b> Heat stress (35 and 40°C) elicited total soluble protein in populations 1 and 2 however reduced in population 3 with increasing exposure time to 10 days. New polypeptides of 23 KD at 4 hrs in population 3 below 35°C and population 2 below 40°C and 28 KD at 48 hrs in population one below 30°C however 20 KD altogether populations below 40°C. The expression of most polypeptides diminished for 4 hrs however induced for 24, 48 hrs and 10 days with increase heat temperature to 40°C relative to their expression among the management seedlings. SOD1 and SOD2 have detected altogether most of the genotypes, however, heat stress (35, 40°C) induced the expression of SOD2 and SOD1 and was altogether genotyped for 10 days as compared with the control. <b>Conclusion:</b> The heat stress caused protein degradation and conjointly induced expression of new synthesized HSPs throughout heat acclimatization may be related to heat injury and the improved thermotolerance in early hours of germination and additional studies are required for its protein identification.