Highlights Cutting height and harvest date were used to alter stover moisture content, yield, and composition. Anaerobic co-storage of grain and stover limited losses to less than 6% of dry matter. Extent of fermentation was greater for higher moisture stover than grain, but total acids were less than 5 g kg-1. Reducing the harvester cutter head rotational speed resulted in a greater fraction of whole corn kernels. Abstract. This research investigated the utility of co-harvesting and anaerobic co-storage of corn grain and stover to positively influence their physical and chemical characteristics as a biomass feedstock. Corn grain and stover were harvested in 2019 and 2020 with a self-propelled forage harvester. Stover yield, moisture content, and composition were altered by the harvest date, stubble height, and header configuration. Harvest date had the utility of varying the stover moisture content (p < 0.001) from 42.3% to 53.5% (w.b.) and 43.1% to 53.9% (w.b.) for the 2019 and 2020 harvest years, respectively. Stubble height was also utilized to vary stover moisture content. A negative linear relationship was established between stubble height and stover moisture content for the early (R2 = 0.76) and late harvest (R2 = 0.91) dates for both years. Stover yield also showed a negative linear relationship (R2 = 0.76) with stubble height over both years. Regardless of the stubble height, the row-crop header collected more stover (p < 0.001) than the ear-snapper header. In 2020, harvested stover ranged from 5.0 to 10.5 Mg ha-1, with ha-1 representing 41% to 85% of the total available stover. In both years, stover ash content was less than 64 g kg-1. Material stored in pilot-scale silos (19 L) was well conserved during anaerobic storage, with average DM losses of 4.8% and 3.4% in 2019 and 2020, respectively. Grain moisture content averaged 23.6% (w.b.) at harvest, and 31.0% (w.b.) after storage as moisture migrated from the moist stover to the drier grain. Harvesting whole-plant corn with a forage harvester had the unwanted effect of reducing the particle size of the grain fraction, which would complicate downstream utilization. However, reducing the harvester cutterhead speed increased the fraction of intact kernels from 47% to 85% by mass. The studied system was a viable alternative to conventional corn grain and stover systems for producing feedstocks for biochemical conversion. Keywords: Ash, Ensiling, Ethanol, Maize.