<p>Artifacts and unpredictable fetal movements can hinder clear fetal heart imaging during ultrasound scans, complicating anatomical identification. This study presents a new medical imaging approach that combines one-stage instance segmentation with ultrasound (US) video enhancement for precise fetal heart defect detection. This innovation allows real-time identification and timely medical intervention. The study acquired 100 fetal heart US videos from an Indonesian Hospital featuring cardiac septal defects, generating 1,000 frames for training, validation, and testing. Utilizing a combination of the multi-scale input reconstruction network (MIRNet) for image enhancement and YOLOv8l-seg for real-time instance segmentation, the method achieved outstanding validation results, boasting a 99.50% mAP for bounding box prediction and 98.40% for mask prediction. It delivered a remarkable real-time processing speed of 68.4 frames per second. In application to new patients, the method yielded a 65.93% mAP for bounding box prediction and 57.66% for mask prediction. This proposed approach offers a promising solution to early fetal heart defect detection using ultrasound, holding substantial potential for enhancing healthcare outcomes.</p>
Read full abstract